Overview¶
To build computational graphs, you need to specify an estimator
, a (set of) indexer(s), and any preprocessing pipelines wanted.
The indexer(s) determine the cross validation strategy to use during fit
and transform
calls. The FullIndex
can
be used if no cross-validation is wanted.
The basic node is the Learner
. The learner contains the sub-graph pertaining to a specific indexer-estimator-preprocessing configuration.
Similarly, the Transformer
contains the sub-graph of a specific indexer-preprocessing configuration. To learn more, see the
learner mechanics tutorial.
To build a graph of a set of Learner`
and Transformer
instances, several handles come in handy for ensuring efficient computation.
The Group
class is a handle for a set of learners and transformers sharing a specific indexer, while the Layer
class is a handle for
a set of groups. To learn more about how to efficiently parallelize independent estimations, see the layer mechanics tutorial.
Frequently, we want the output of some set of learners to be feed as input to some other set. The ParallelProcessing
engine is a purpose-built
parallel job-execution engine design to handle these types of scenarios. Together with the Sequential
handle, designing
deep computational graphs is straightforward. See the advanced graph mechanics tutorial for more information.