from mlens.ensemble import SuperLearner
ensemble = SuperLearner()
ensemble.add(estimators)
ensemble.add_meta(meta_estimator)
ensemble.fit(X, y).predict(X)
Modular, flexible, memory neutral; embarrassingly parallel
Optimized for maximum concurrency at minimum memory consumption
Build deep, complex ensembles in just a few lines of code
Leverage low-level API for full control and dynamic computations
Purpose-built model-selection suite for efficient ensemble learning
Open sourced under MIT
Free to use for commercial purposes
pip install mlens
Learner & transformer nodes
Layer groups
Parallel processing
Sequential stacking