Source code for mlens.metrics.metrics

"""ML-ENSEMBLE

:author: Sebastian Flennerhag
:copyright: 2017-2018
:license: MIT

Scoring functions.
"""

from __future__ import division

import numpy as np


[docs]def rmse(y, p): r"""Root Mean Square Error. .. math:: RMSE(\mathbf{y}, \mathbf{p}) = \sqrt{MSE(\mathbf{y}, \mathbf{p})}, with .. math:: MSE(\mathbf{y}, \mathbf{p}) = |S| \sum_{i \in S} (y_i - p_i)^2 Parameters ---------- y : array-like of shape [n_samples, ] ground truth. p : array-like of shape [n_samples, ] predicted labels. Returns ------- z: float root mean squared error. """ z = y - p return np.sqrt(np.mean(np.multiply(z, z)))
[docs]def mape(y, p): r"""Mean Average Percentage Error. .. math:: MAPE(\mathbf{y}, \mathbf{p}) = |S| \sum_{i \in S} | \frac{y_i - p_i}{y_i} | Parameters ---------- y : array-like of shape [n_samples, ] ground truth. p : array-like of shape [n_samples, ] predicted labels. Returns ------- z: float mean average percentage error. """ return np.mean(np.divide(np.abs((y - p)), np.abs(y)))
[docs]def wape(y, p): r"""Weighted Mean Average Percentage Error. .. math:: WAPE(\mathbf{y}, \mathbf{p}) = \frac{\sum_{i \in S} | y_i - p_i|}{ \sum_{i \in S} |y_i|} Parameters ---------- y : array-like of shape [n_samples, ] ground truth. p : array-like of shape [n_samples, ] predicted labels. Returns ------- z: float weighted mean average percentage error. """ return np.sum(np.abs(y - p)) / np.sum(np.abs(y))