ML-ENSEMBLE
author: | Sebastian Flennerhag |
---|---|
copyright: | 2017-2018 |
licence: | MIT |
mlens.estimators¶
BaseEstimator¶
-
class
mlens.estimators.
BaseEstimator
[source]¶ Bases:
mlens.parallel.wrapper.EstimatorMixin
,mlens.parallel.base.ParamMixin
,mlens.externals.sklearn.base.BaseEstimator
Base class for estimators
Ensure proper initialization of Mixins.
LearnerEstimator¶
-
class
mlens.estimators.
LearnerEstimator
(estimator, indexer, verbose=False, scorer=None, backend=None, n_jobs=-1, dtype=None)[source]¶ Bases:
mlens.estimators.estimators.BaseEstimator
Learner estimator
Wraps an estimator in a cross-validation strategy.
Parameters: - estimator (obj) – estimator to construct learner from.
- indexer (str, obj) – a cross-validation strategy. Either a :mod`mlens.index` indexer instance or a string.
- name (str, optional) – name of learner. If
preprocessing
is notNone
, the name of the transformer will be prepended. If not specified, the name of the learner will be the name of the estimator in lower case. - scorer (func, optional) – function to use for scoring predictions during cross-validated fitting.
- verbose (bool, int (default = False)) – whether to report completed fits.
- backend (str (default='threading')) – parallel backend. One of
'treading'
,'multiprocessing'
and'sequential'
. - n_jobs (int (default=-1)) – degree of concurrency. Set to
-1
for maximum and1
for sequential processing.
TransformerEstimator¶
-
class
mlens.estimators.
TransformerEstimator
(preprocessing, indexer, verbose=False, backend=None, n_jobs=-1, dtype=None)[source]¶ Bases:
mlens.estimators.estimators.BaseEstimator
Transformer estimator
Wraps an preprocessing pipeline in a cross-validation strategy.
Parameters: - preprocessing (obj) – preprocessing pipeline to construct transformer from.
- indexer (str, obj) – a cross-validation strategy. Either a :mod`mlens.index` indexer instance or a string.
- name (str) – name of transformer.
- verbose (bool, int (default = False)) – whether to report completed fits.
- backend (str (default='threading')) – parallel backend. One of
'treading'
,'multiprocessing'
and'sequential'
. - n_jobs (int (default=-1)) – degree of concurrency. Set to
-1
for maximum and1
for sequential processing.
LayerEnsemble¶
-
class
mlens.estimators.
LayerEnsemble
(groups, propagate_features=None, shuffle=False, n_jobs=-1, backend=None, verbose=False, random_state=None, dtype=None)[source]¶ Bases:
mlens.estimators.estimators.BaseEstimator
One-layer ensemble
An ensemble of estimators and preprocessing pipelines in one layer. Takes an input X and generates an output P. Assumes all preprocessing pipelines and all estimators are independent.
Parameters: - groups (list,) – list of
Group
instances to build layer with. - proba (bool (default = False)) – whether to call predict_proba on the estimators in the layer when predicting.
- propagate_features (list, range, optional) – Features to propagate from the input array to the output array. Carries input features to the output of the layer, useful for propagating original data through several stacked layers. Propagated features are stored in the left-most columns.
- verbose (int or bool (default = False)) –
level of verbosity.
verbose = 0
silent (same asverbose = False
)verbose = 1
messages at start and finish (same asverbose = True
)verbose = 2
messages for preprocessing and estimatorsverbose = 3
messages for completed job
If
verbose >= 10
prints tosys.stderr
, elsesys.stdout
. - shuffle (bool (default = False)) – Whether to shuffle data before fitting layer.
- random_state (obj, int, optional) – Random seed number to use for shuffling inputs
-
get_params
(deep=True)[source]¶ Get parameters for this estimator. :param deep: If True, will return the parameters for this estimator and
contained subobjects that are estimators.Returns: params – Parameter names mapped to their values. Return type: mapping of string to any
- groups (list,) – list of