ML-ENSEMBLE
| author: | Sebastian Flennerhag |
|---|---|
| copyright: | 2017-2018 |
| licence: | MIT |
mlens.estimators¶
BaseEstimator¶
-
class
mlens.estimators.BaseEstimator[source]¶ Bases:
mlens.parallel.wrapper.EstimatorMixin,mlens.parallel.base.ParamMixin,mlens.externals.sklearn.base.BaseEstimatorBase class for estimators
Ensure proper initialization of Mixins.
LearnerEstimator¶
-
class
mlens.estimators.LearnerEstimator(estimator, indexer, verbose=False, scorer=None, backend=None, n_jobs=-1, dtype=None)[source]¶ Bases:
mlens.estimators.estimators.BaseEstimatorLearner estimator
Wraps an estimator in a cross-validation strategy.
Parameters: - estimator (obj) – estimator to construct learner from.
- indexer (str, obj) – a cross-validation strategy. Either a :mod`mlens.index` indexer instance or a string.
- name (str, optional) – name of learner. If
preprocessingis notNone, the name of the transformer will be prepended. If not specified, the name of the learner will be the name of the estimator in lower case. - scorer (func, optional) – function to use for scoring predictions during cross-validated fitting.
- verbose (bool, int (default = False)) – whether to report completed fits.
- backend (str (default='threading')) – parallel backend. One of
'treading','multiprocessing'and'sequential'. - n_jobs (int (default=-1)) – degree of concurrency. Set to
-1for maximum and1for sequential processing.
TransformerEstimator¶
-
class
mlens.estimators.TransformerEstimator(preprocessing, indexer, verbose=False, backend=None, n_jobs=-1, dtype=None)[source]¶ Bases:
mlens.estimators.estimators.BaseEstimatorTransformer estimator
Wraps an preprocessing pipeline in a cross-validation strategy.
Parameters: - preprocessing (obj) – preprocessing pipeline to construct transformer from.
- indexer (str, obj) – a cross-validation strategy. Either a :mod`mlens.index` indexer instance or a string.
- name (str) – name of transformer.
- verbose (bool, int (default = False)) – whether to report completed fits.
- backend (str (default='threading')) – parallel backend. One of
'treading','multiprocessing'and'sequential'. - n_jobs (int (default=-1)) – degree of concurrency. Set to
-1for maximum and1for sequential processing.
LayerEnsemble¶
-
class
mlens.estimators.LayerEnsemble(groups, propagate_features=None, shuffle=False, n_jobs=-1, backend=None, verbose=False, random_state=None, dtype=None)[source]¶ Bases:
mlens.estimators.estimators.BaseEstimatorOne-layer ensemble
An ensemble of estimators and preprocessing pipelines in one layer. Takes an input X and generates an output P. Assumes all preprocessing pipelines and all estimators are independent.
Parameters: - groups (list,) – list of
Groupinstances to build layer with. - proba (bool (default = False)) – whether to call predict_proba on the estimators in the layer when predicting.
- propagate_features (list, range, optional) – Features to propagate from the input array to the output array. Carries input features to the output of the layer, useful for propagating original data through several stacked layers. Propagated features are stored in the left-most columns.
- verbose (int or bool (default = False)) –
level of verbosity.
verbose = 0silent (same asverbose = False)verbose = 1messages at start and finish (same asverbose = True)verbose = 2messages for preprocessing and estimatorsverbose = 3messages for completed job
If
verbose >= 10prints tosys.stderr, elsesys.stdout. - shuffle (bool (default = False)) – Whether to shuffle data before fitting layer.
- random_state (obj, int, optional) – Random seed number to use for shuffling inputs
-
get_params(deep=True)[source]¶ Get parameters for this estimator. :param deep: If True, will return the parameters for this estimator and
contained subobjects that are estimators.Returns: params – Parameter names mapped to their values. Return type: mapping of string to any
- groups (list,) – list of